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Introduction 

Traffic state at the network level can be described by network-wide traffic flow relationships 
such as network fundamental diagram (NFD) (1–3), network travel time reliability (TTR) relation 
(4, 5), total experienced delay, and characteristics of the hysteresis formed due to the network 
gridlock (6). The evaluation of in-field deployment and experimental analyses indicate that 
macroscopic traffic flow relationships are affected by changes in network supplies, such as climate 
change, signal coordination, number of accidents, and changes in the specifications of roadways 
and intersections (7, 8). This study aims to explore the influence of weather changes on network-
wide fundamental diagram and travel time reliability relation through a stochasticity analysis. 
Moreover, an online traffic state prediction framework is created utilizing particle filter estimation 
engine. 

Methodology 

In order to investigate the inclement weather impact on network-wide traffic flow 
relationships, 86 days actual traffic data of Chicago downtown transportation network are 
employed. Different relationships between traffic flow macroscopic exponents and weather 
descriptors such as visibility and precipitation are investigated. Mainly, network fundamental 
diagram and travel time reliability relations are considered to assess the weather impacts on the 
network level traffic state. Particle filter method is employed for a real-time traffic state prediction. 
A particle filter is a recursive, Bayesian state approximator that utilizes discrete particles to 
estimate the subsequent distribution of a system state. 

 
 
Network Fundamental Diagram 

Network fundamental diagram (NFD) represents the aggregated traffic flow-density 
relationship at the network level. NFD employment leads to generation of new traffic control 
schemes that may enhance mobility in transportation networks (9–15). Relationship between the 
network-wide weighted average traffic flow and density is used to define the NFD. These variables 
are calculated as space-mean weighted averages of the link flows and densities, with link weights 
equal to product of link length and number of lanes (2, 16). 
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Here, 𝑞𝑞 and 𝑘𝑘 are the link flow and density, 𝑄𝑄 and 𝐾𝐾 are the weighted average flow and density 
values respectively, M is the number of links in the network, n is the number of lanes in each link, 
and l is the link length. This framework yields ordered pairs of macroscopic flow and density 
values at 5-minute time intervals that cumulatively form the simulation horizon. These values are 
plotted to give the NFD. 

The heterogeneous spatiotemporal distribution of congestion across real networks often creates 
scatter and hysteresis in the NFD (17). A hysteresis is a clockwise loop (complete or incomplete) 
in the NFD diagram, which shows the level of system instability during the unloading period. In 
large-scale networks with high levels of congestion, gridlock is formed (18), and the system cannot 
efficiently recover itself during the unloading phase, which causes the formation of a hysteresis 
loop in the NFD graph. The area of the hysteresis loop (Eq. 3), therefore, is a good representative 
of system instability. 
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where, 𝐴𝐴𝐻𝐻𝐻𝐻𝐻𝐻 is the area of hysteresis loop in NFD, 𝐿𝐿 is the hysteresis closed curve in NFD, and 
𝑄𝑄(𝑘𝑘) is the average network flow as a function of average network density. 
 
Travel Time Reliability 

The distance-weighted standard deviation of travel time per unit of distance is often used as a 
measure of travel time variability. Network travel time reliability can be characterized by a travel 
time distribution, with corresponding mean and standard deviation. The first component describes 
the central tendency and the second shows the dispersion. To control for the impacts of trip 
distance variations on travel time reliability, the travel time (t) needs to be normalized by the trip 
distance (d). So, the travel time per unit of distance (t′=t/d) is considered as the travel time measure 
(5). Thus, the distance-weighted mean and standard deviation of the travel time rate can be 
estimated as follows: 
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In Eq. (4), 𝜇𝜇 is the inverse of spatial mean speed (5). To construct the relationship between 
distance-weighted mean and standard deviation of travel time rate, a linear model has been 
suggested in the literature (19, 20):  

𝜎𝜎(𝑡𝑡′) = 𝑝𝑝1 + 𝑝𝑝2𝜇𝜇(𝑡𝑡′)                                                               (6) 
where 



𝜎𝜎(𝑡𝑡′): standard deviation of the trip time rate t′, 
𝜇𝜇(𝑡𝑡′): mean value of t′, and 
𝑝𝑝1,𝑝𝑝2: coefficients 
 
Particle Filter Estimation 

Particle filter estimation approach consists of a system model that relates the model states to 
measurements. This approach is suitable for online estimations. State estimation is recursively 
computed by the particle filter algorithm through the steps of initialization, prediction, and 
correction. Here, the first order difference equation is considered as a state transition function for 
particle filter algorithm: 
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where, the exit function of G(n) is approximated by a third-degree polynomial function of 
accumulation:  
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where 
𝑛𝑛(𝜏𝜏): accumulation at time 𝜏𝜏, 
𝑇𝑇: time period of the model, 
𝑞𝑞(𝜏𝜏): exogenous traffic flow demand, 
𝑊𝑊𝑊𝑊𝑊𝑊(𝜏𝜏): weather adjustment factor, and 
𝛼𝛼1,𝛼𝛼2,𝛼𝛼3: coefficients 
 

The particle filter algorithm determines the state estimates of the nonlinear system (traffic flow 
relationships) using the specified state transition (Eq. 7) and measurement likelihood functions. 

Results 

DYNASMART-P traffic assignment tool is utilized to simulate the traffic flow in the network 
using the actual traffic data inputs. Figure 1 illustrates the study area network besides the loading 
demand profile. Results revealed the existence of robust correlations between the weather index 
and traffic state describing factors such as coefficient of reliability relation, heterogeneity of 
density distribution throughout the network, maximum of experienced network-wide average flow 
and density and the area restricted by hysteresis loop in NFD. Figure 2 illustrates a linear 
relationship between the spatiotemporal standard deviation of density and the area of hysteresis 
loop in NFD. According to Figure 3, by increasing the precipitation rate, the throughput is dropped, 
maximum experienced congestion by the network is increased and the area of hysteresis loop gets 
larger. An interesting observation is that by intensifying the precipitation rate, network becomes 
more reliable. One possible reason for this observation is the reduced speed variations, which is 
the case due to lower adopted speeds by travelers under the harsh weather conditions. Thus, travel 
time fluctuation is decreased during the high precipitation of snow or rain, and this results in more 
reliable system. 
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Figure 1 - (a) study area and (b) loading demand profile 
 

 

Figure 2 - Relationship between the spatiotemporal standard deviation of density and area of 
hysteresis loop in NFD graph  
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Figure 3 - Relationship between the rain/snow precipitation rate and (a) network throughput, (b) 
maximum congestion experienced by the network, (c) hysteresis loop in NFD, and (d) coefficient 

of reliability relation 

Conclusion 

Assessing the impacts of inclement weather is accomplished by evaluating the changes in NFD 
and TTR relations. Traffic data of 86 days of Chicago downtown network is employed to create 
scenarios with different specifications of demand, weather impact, and number of network-wide 
incidents. Results discovered a relationship between the precipitation rate and the network-wide 
traffic state representative factors. A real-time traffic state prediction engine is also created 
utilizing the particle filter method. Application of this model is examined for Chicago network and 
a successful calibration and validation process is illustrated. Findings of this research implies the 
necessity of incorporating a weather factor in network control strategies, demand management and 
traffic estimation and prediction systems. 
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